Copied to
clipboard

G = C425Q8order 128 = 27

5th semidirect product of C42 and Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C425Q8, C42.164D4, C23.299C24, C4.56(C4⋊Q8), C424C4.18C2, C22.61(C22×Q8), (C2×C42).459C22, (C22×C4).784C23, C22.182(C22×D4), (C22×Q8).412C22, C43(C23.78C23), C44(C23.81C23), C2.15(C22.19C24), C2.C42.535C22, C23.78C23.33C2, C23.81C23.55C2, C2.8(C23.37C23), C2.7(C2×C4⋊Q8), (C4×C4⋊C4).46C2, (C2×C4×Q8).28C2, (C2×C4).299(C2×D4), (C2×C4).122(C2×Q8), (C2×C4).91(C4○D4), (C2×C4⋊C4).842C22, C22.179(C2×C4○D4), SmallGroup(128,1131)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C425Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C425Q8
C1C23 — C425Q8
C1C22×C4 — C425Q8
C1C23 — C425Q8

Generators and relations for C425Q8
 G = < a,b,c,d | a4=b4=c4=1, d2=c2, ab=ba, cac-1=a-1, dad-1=a-1b2, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 388 in 252 conjugacy classes, 124 normal (8 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2.C42, C2×C42, C2×C42, C2×C4⋊C4, C4×Q8, C22×Q8, C424C4, C4×C4⋊C4, C23.78C23, C23.81C23, C2×C4×Q8, C425Q8
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C22.19C24, C2×C4⋊Q8, C23.37C23, C425Q8

Smallest permutation representation of C425Q8
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 56 16 127)(2 53 13 128)(3 54 14 125)(4 55 15 126)(5 120 59 73)(6 117 60 74)(7 118 57 75)(8 119 58 76)(9 69 63 112)(10 70 64 109)(11 71 61 110)(12 72 62 111)(17 90 44 96)(18 91 41 93)(19 92 42 94)(20 89 43 95)(21 100 48 85)(22 97 45 86)(23 98 46 87)(24 99 47 88)(25 34 84 104)(26 35 81 101)(27 36 82 102)(28 33 83 103)(29 108 38 79)(30 105 39 80)(31 106 40 77)(32 107 37 78)(49 67 124 113)(50 68 121 114)(51 65 122 115)(52 66 123 116)
(1 5 50 110)(2 8 51 109)(3 7 52 112)(4 6 49 111)(9 54 118 66)(10 53 119 65)(11 56 120 68)(12 55 117 67)(13 58 122 70)(14 57 123 69)(15 60 124 72)(16 59 121 71)(17 26 98 107)(18 25 99 106)(19 28 100 105)(20 27 97 108)(21 30 94 103)(22 29 95 102)(23 32 96 101)(24 31 93 104)(33 48 39 92)(34 47 40 91)(35 46 37 90)(36 45 38 89)(41 84 88 77)(42 83 85 80)(43 82 86 79)(44 81 87 78)(61 127 73 114)(62 126 74 113)(63 125 75 116)(64 128 76 115)
(1 103 50 30)(2 36 51 38)(3 101 52 32)(4 34 49 40)(5 94 110 21)(6 91 111 47)(7 96 112 23)(8 89 109 45)(9 98 118 17)(10 86 119 43)(11 100 120 19)(12 88 117 41)(13 102 122 29)(14 35 123 37)(15 104 124 31)(16 33 121 39)(18 62 99 74)(20 64 97 76)(22 58 95 70)(24 60 93 72)(25 113 106 126)(26 66 107 54)(27 115 108 128)(28 68 105 56)(42 61 85 73)(44 63 87 75)(46 57 90 69)(48 59 92 71)(53 82 65 79)(55 84 67 77)(78 125 81 116)(80 127 83 114)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,56,16,127)(2,53,13,128)(3,54,14,125)(4,55,15,126)(5,120,59,73)(6,117,60,74)(7,118,57,75)(8,119,58,76)(9,69,63,112)(10,70,64,109)(11,71,61,110)(12,72,62,111)(17,90,44,96)(18,91,41,93)(19,92,42,94)(20,89,43,95)(21,100,48,85)(22,97,45,86)(23,98,46,87)(24,99,47,88)(25,34,84,104)(26,35,81,101)(27,36,82,102)(28,33,83,103)(29,108,38,79)(30,105,39,80)(31,106,40,77)(32,107,37,78)(49,67,124,113)(50,68,121,114)(51,65,122,115)(52,66,123,116), (1,5,50,110)(2,8,51,109)(3,7,52,112)(4,6,49,111)(9,54,118,66)(10,53,119,65)(11,56,120,68)(12,55,117,67)(13,58,122,70)(14,57,123,69)(15,60,124,72)(16,59,121,71)(17,26,98,107)(18,25,99,106)(19,28,100,105)(20,27,97,108)(21,30,94,103)(22,29,95,102)(23,32,96,101)(24,31,93,104)(33,48,39,92)(34,47,40,91)(35,46,37,90)(36,45,38,89)(41,84,88,77)(42,83,85,80)(43,82,86,79)(44,81,87,78)(61,127,73,114)(62,126,74,113)(63,125,75,116)(64,128,76,115), (1,103,50,30)(2,36,51,38)(3,101,52,32)(4,34,49,40)(5,94,110,21)(6,91,111,47)(7,96,112,23)(8,89,109,45)(9,98,118,17)(10,86,119,43)(11,100,120,19)(12,88,117,41)(13,102,122,29)(14,35,123,37)(15,104,124,31)(16,33,121,39)(18,62,99,74)(20,64,97,76)(22,58,95,70)(24,60,93,72)(25,113,106,126)(26,66,107,54)(27,115,108,128)(28,68,105,56)(42,61,85,73)(44,63,87,75)(46,57,90,69)(48,59,92,71)(53,82,65,79)(55,84,67,77)(78,125,81,116)(80,127,83,114)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,56,16,127)(2,53,13,128)(3,54,14,125)(4,55,15,126)(5,120,59,73)(6,117,60,74)(7,118,57,75)(8,119,58,76)(9,69,63,112)(10,70,64,109)(11,71,61,110)(12,72,62,111)(17,90,44,96)(18,91,41,93)(19,92,42,94)(20,89,43,95)(21,100,48,85)(22,97,45,86)(23,98,46,87)(24,99,47,88)(25,34,84,104)(26,35,81,101)(27,36,82,102)(28,33,83,103)(29,108,38,79)(30,105,39,80)(31,106,40,77)(32,107,37,78)(49,67,124,113)(50,68,121,114)(51,65,122,115)(52,66,123,116), (1,5,50,110)(2,8,51,109)(3,7,52,112)(4,6,49,111)(9,54,118,66)(10,53,119,65)(11,56,120,68)(12,55,117,67)(13,58,122,70)(14,57,123,69)(15,60,124,72)(16,59,121,71)(17,26,98,107)(18,25,99,106)(19,28,100,105)(20,27,97,108)(21,30,94,103)(22,29,95,102)(23,32,96,101)(24,31,93,104)(33,48,39,92)(34,47,40,91)(35,46,37,90)(36,45,38,89)(41,84,88,77)(42,83,85,80)(43,82,86,79)(44,81,87,78)(61,127,73,114)(62,126,74,113)(63,125,75,116)(64,128,76,115), (1,103,50,30)(2,36,51,38)(3,101,52,32)(4,34,49,40)(5,94,110,21)(6,91,111,47)(7,96,112,23)(8,89,109,45)(9,98,118,17)(10,86,119,43)(11,100,120,19)(12,88,117,41)(13,102,122,29)(14,35,123,37)(15,104,124,31)(16,33,121,39)(18,62,99,74)(20,64,97,76)(22,58,95,70)(24,60,93,72)(25,113,106,126)(26,66,107,54)(27,115,108,128)(28,68,105,56)(42,61,85,73)(44,63,87,75)(46,57,90,69)(48,59,92,71)(53,82,65,79)(55,84,67,77)(78,125,81,116)(80,127,83,114) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,56,16,127),(2,53,13,128),(3,54,14,125),(4,55,15,126),(5,120,59,73),(6,117,60,74),(7,118,57,75),(8,119,58,76),(9,69,63,112),(10,70,64,109),(11,71,61,110),(12,72,62,111),(17,90,44,96),(18,91,41,93),(19,92,42,94),(20,89,43,95),(21,100,48,85),(22,97,45,86),(23,98,46,87),(24,99,47,88),(25,34,84,104),(26,35,81,101),(27,36,82,102),(28,33,83,103),(29,108,38,79),(30,105,39,80),(31,106,40,77),(32,107,37,78),(49,67,124,113),(50,68,121,114),(51,65,122,115),(52,66,123,116)], [(1,5,50,110),(2,8,51,109),(3,7,52,112),(4,6,49,111),(9,54,118,66),(10,53,119,65),(11,56,120,68),(12,55,117,67),(13,58,122,70),(14,57,123,69),(15,60,124,72),(16,59,121,71),(17,26,98,107),(18,25,99,106),(19,28,100,105),(20,27,97,108),(21,30,94,103),(22,29,95,102),(23,32,96,101),(24,31,93,104),(33,48,39,92),(34,47,40,91),(35,46,37,90),(36,45,38,89),(41,84,88,77),(42,83,85,80),(43,82,86,79),(44,81,87,78),(61,127,73,114),(62,126,74,113),(63,125,75,116),(64,128,76,115)], [(1,103,50,30),(2,36,51,38),(3,101,52,32),(4,34,49,40),(5,94,110,21),(6,91,111,47),(7,96,112,23),(8,89,109,45),(9,98,118,17),(10,86,119,43),(11,100,120,19),(12,88,117,41),(13,102,122,29),(14,35,123,37),(15,104,124,31),(16,33,121,39),(18,62,99,74),(20,64,97,76),(22,58,95,70),(24,60,93,72),(25,113,106,126),(26,66,107,54),(27,115,108,128),(28,68,105,56),(42,61,85,73),(44,63,87,75),(46,57,90,69),(48,59,92,71),(53,82,65,79),(55,84,67,77),(78,125,81,116),(80,127,83,114)]])

44 conjugacy classes

class 1 2A···2G4A···4H4I···4AJ
order12···24···44···4
size11···11···14···4

44 irreducible representations

dim111111222
type+++++++-
imageC1C2C2C2C2C2D4Q8C4○D4
kernelC425Q8C424C4C4×C4⋊C4C23.78C23C23.81C23C2×C4×Q8C42C42C2×C4
# reps1144424816

Matrix representation of C425Q8 in GL6(𝔽5)

040000
400000
004000
000100
000032
000002
,
300000
030000
002000
000200
000010
000001
,
030000
300000
004000
000400
000041
000031
,
010000
400000
000100
001000
000020
000043

G:=sub<GL(6,GF(5))| [0,4,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,2,2],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,3,0,0,0,0,1,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,2,4,0,0,0,0,0,3] >;

C425Q8 in GAP, Magma, Sage, TeX

C_4^2\rtimes_5Q_8
% in TeX

G:=Group("C4^2:5Q8");
// GroupNames label

G:=SmallGroup(128,1131);
// by ID

G=gap.SmallGroup(128,1131);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,112,253,120,758,723,100,192]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽